holopy3/Assets/SteamVR/InteractionSystem/Samples/BuggyBuddy/BuggyBuddy.cs

245 lines
7.4 KiB
C#
Raw Permalink Normal View History

2020-12-10 14:25:12 +00:00
using UnityEngine;
using System;
using System.Collections;
namespace Valve.VR.InteractionSystem.Sample
{
public class BuggyBuddy : MonoBehaviour
{
public Transform turret;
float turretRot;
[Tooltip("Maximum steering angle of the wheels")]
public float maxAngle = 30f;
[Tooltip("Maximum Turning torque")]
public float maxTurnTorque = 30f;
[Tooltip("Maximum torque applied to the driving wheels")]
public float maxTorque = 300f;
[Tooltip("Maximum brake torque applied to the driving wheels")]
public float brakeTorque = 30000f;
[Tooltip("If you need the visual wheels to be attached automatically, drag the wheel shape here.")]
public GameObject[] wheelRenders;
[Tooltip("The vehicle's speed when the physics engine can use different amount of sub-steps (in m/s).")]
public float criticalSpeed = 5f;
[Tooltip("Simulation sub-steps when the speed is above critical.")]
public int stepsBelow = 5;
[Tooltip("Simulation sub-steps when the speed is below critical.")]
public int stepsAbove = 1;
private WheelCollider[] m_Wheels;
public AudioSource au_motor;
[HideInInspector]
public float mvol;
public AudioSource au_skid;
float svol;
public WheelDust skidsample;
float skidSpeed = 3;
public Vector3 localGravity;
[HideInInspector]
public Rigidbody body;
public float rapidfireTime = 0;
private float shootTimer;
[HideInInspector]
public Vector2 steer;
[HideInInspector]
public float throttle;
[HideInInspector]
public float handBrake;
[HideInInspector]
public Transform controllerReference;
[HideInInspector]
public float speed;
public Transform centerOfMass;
private void Start()
{
body = GetComponent<Rigidbody>();
m_Wheels = GetComponentsInChildren<WheelCollider>();
body.centerOfMass = body.transform.InverseTransformPoint(centerOfMass.position) * body.transform.lossyScale.x;
}
/*
private void TurretInput()
{
Vector2 tIn = TurretControl.joystick();
Vector3 tur = new Vector3(tIn.x, 0, tIn.y);
tur = TurretControl.transform.TransformDirection(tur);
tur = transform.InverseTransformDirection(tur);
tur = Vector3.ProjectOnPlane(tur, Vector3.up);
turretRot = VectorMath.FindAngle(Vector3.forward, tur, Vector3.up) * Mathf.Rad2Deg;
Vector3 turup = Vector3.forward;
turret.localRotation = Quaternion.Euler(turup * turretRot);
if (rapidfireTime == 0)
{
if (TurretControl.GetPressDown(KnucklesButton.Trigger))
{
Fire();
}
}else
{
if (shootTimer > rapidfireTime&& TurretControl.GetPress(KnucklesButton.Trigger))
{
Fire();
shootTimer = 0;
}
shootTimer += Time.deltaTime;
}
}
*/
private void Update()
{
m_Wheels[0].ConfigureVehicleSubsteps(criticalSpeed, stepsBelow, stepsAbove);
//TurretInput();
//keyboard input for testing
//Vector3 move = Vector3.forward * Input.GetAxis("Vertical") + Vector3.right * Input.GetAxis("Horizontal");
//driving input
//float forward = maxTorque * move.magnitude;
float forward = maxTorque * throttle;
if (steer.y < -0.5f)
forward *= -1;
float angle = maxAngle * steer.x;
speed = transform.InverseTransformVector(body.velocity).z;
float forw = Mathf.Abs(speed);
angle /= 1 + forw / 20;
// if (Mathf.Abs(move.z) < 0.1f && Mathf.Abs(move.x) > 0.5)
// forward *= 3;
//float forward = maxTorque * throttle; not fun lawrence steering
float fVol = Mathf.Abs(forward);
mvol = Mathf.Lerp(mvol, Mathf.Pow((fVol / maxTorque), 0.8f) * Mathf.Lerp(0.4f, 1.0f, (Mathf.Abs(m_Wheels[2].rpm) / 200)) * Mathf.Lerp(1.0f, 0.5f, handBrake), Time.deltaTime * 9);
au_motor.volume = Mathf.Clamp01(mvol);
float motorPitch = Mathf.Lerp(0.8f, 1.0f, mvol);
au_motor.pitch = Mathf.Clamp01(motorPitch);
svol = Mathf.Lerp(svol, skidsample.amt / skidSpeed, Time.deltaTime * 9);
au_skid.volume = Mathf.Clamp01(svol);
float skidPitch = Mathf.Lerp(0.9f, 1.0f, svol);
au_skid.pitch = Mathf.Clamp01(skidPitch);
//float forward = maxTorque * Input.GetAxis("Vertical");
//bool stopped = Mathf.Abs(transform.InverseTransformDirection(GetComponent<Rigidbody>().velocity).z) < 1.0f;
for (int i = 0; i < wheelRenders.Length; i++)
{
WheelCollider wheel = m_Wheels[i];
if (wheel.transform.localPosition.z > 0)
{
// front wheels
wheel.steerAngle = angle;
//4wd?
wheel.motorTorque = forward;
}
if (wheel.transform.localPosition.z < 0) // back wheels
{
}
// wheel.brakeTorque = Mathf.Lerp(Mathf.Abs(forward) < 0.1f ? 1 : 0, brakeTorque, handBrake);
wheel.motorTorque = forward;
if (wheel.transform.localPosition.x < 0) // left wheels
{
}
if (wheel.transform.localPosition.x >= 0) // right wheels
{
}
// Update visual wheels if they exist, and the colliders are enabled
if (wheelRenders[i] != null && m_Wheels[0].enabled)
{
Quaternion q;
Vector3 p;
wheel.GetWorldPose(out p, out q);
Transform shapeTransform = wheelRenders[i].transform;
shapeTransform.position = p;
shapeTransform.rotation = q;
}
}
steer = Vector2.Lerp(steer, Vector2.zero, Time.deltaTime * 4);
}
private void FixedUpdate()
{
body.AddForce(localGravity, ForceMode.Acceleration);
}
public static float FindAngle(Vector3 fromVector, Vector3 toVector, Vector3 upVector)
{
// If the vector the angle is being calculated to is 0...
if (toVector == Vector3.zero)
// ... the angle between them is 0.
return 0f;
// Create a float to store the angle between the facing of the enemy and the direction it's travelling.
float angle = Vector3.Angle(fromVector, toVector);
// Find the cross product of the two vectors (this will point up if the velocity is to the right of forward).
Vector3 normal = Vector3.Cross(fromVector, toVector);
// The dot product of the normal with the upVector will be positive if they point in the same direction.
angle *= Mathf.Sign(Vector3.Dot(normal, upVector));
// We need to convert the angle we've found from degrees to radians.
angle *= Mathf.Deg2Rad;
return angle;
}
}
}