holopy3/Assets/DynamicBone/Scripts/DynamicBone.cs

715 lines
22 KiB
C#
Raw Normal View History

2020-12-10 14:25:12 +00:00
using UnityEngine;
using System.Collections.Generic;
[AddComponentMenu("Dynamic Bone/Dynamic Bone")]
public class DynamicBone : MonoBehaviour
{
#if UNITY_5_3_OR_NEWER
[Tooltip("The root of the transform hierarchy to apply physics.")]
#endif
public Transform m_Root = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("Internal physics simulation rate.")]
#endif
public float m_UpdateRate = 60.0f;
public enum UpdateMode
{
Normal,
AnimatePhysics,
UnscaledTime,
Default
}
public UpdateMode m_UpdateMode = UpdateMode.Default;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much the bones slowed down.")]
#endif
[Range(0, 1)]
public float m_Damping = 0.1f;
public AnimationCurve m_DampingDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much the force applied to return each bone to original orientation.")]
#endif
[Range(0, 1)]
public float m_Elasticity = 0.1f;
public AnimationCurve m_ElasticityDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much bone's original orientation are preserved.")]
#endif
[Range(0, 1)]
public float m_Stiffness = 0.1f;
public AnimationCurve m_StiffnessDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much character's position change is ignored in physics simulation.")]
#endif
[Range(0, 1)]
public float m_Inert = 0;
public AnimationCurve m_InertDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much the bones slowed down when collide.")]
#endif
public float m_Friction = 0;
public AnimationCurve m_FrictionDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("Each bone can be a sphere to collide with colliders. Radius describe sphere's size.")]
#endif
public float m_Radius = 0;
public AnimationCurve m_RadiusDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("If End Length is not zero, an extra bone is generated at the end of transform hierarchy.")]
#endif
public float m_EndLength = 0;
#if UNITY_5_3_OR_NEWER
[Tooltip("If End Offset is not zero, an extra bone is generated at the end of transform hierarchy.")]
#endif
public Vector3 m_EndOffset = Vector3.zero;
#if UNITY_5_3_OR_NEWER
[Tooltip("The force apply to bones. Partial force apply to character's initial pose is cancelled out.")]
#endif
public Vector3 m_Gravity = Vector3.zero;
#if UNITY_5_3_OR_NEWER
[Tooltip("The force apply to bones.")]
#endif
public Vector3 m_Force = Vector3.zero;
#if UNITY_5_3_OR_NEWER
[Tooltip("Collider objects interact with the bones.")]
#endif
public List<DynamicBoneColliderBase> m_Colliders = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("Bones exclude from physics simulation.")]
#endif
public List<Transform> m_Exclusions = null;
public enum FreezeAxis
{
None, X, Y, Z
}
#if UNITY_5_3_OR_NEWER
[Tooltip("Constrain bones to move on specified plane.")]
#endif
public FreezeAxis m_FreezeAxis = FreezeAxis.None;
#if UNITY_5_3_OR_NEWER
[Tooltip("Disable physics simulation automatically if character is far from camera or player.")]
#endif
public bool m_DistantDisable = false;
public Transform m_ReferenceObject = null;
public float m_DistanceToObject = 20;
Vector3 m_LocalGravity = Vector3.zero;
Vector3 m_ObjectMove = Vector3.zero;
Vector3 m_ObjectPrevPosition = Vector3.zero;
float m_BoneTotalLength = 0;
float m_ObjectScale = 1.0f;
float m_Time = 0;
float m_Weight = 1.0f;
bool m_DistantDisabled = false;
class Particle
{
public Transform m_Transform = null;
public int m_ParentIndex = -1;
public float m_Damping = 0;
public float m_Elasticity = 0;
public float m_Stiffness = 0;
public float m_Inert = 0;
public float m_Friction = 0;
public float m_Radius = 0;
public float m_BoneLength = 0;
public bool m_isCollide = false;
public Vector3 m_Position = Vector3.zero;
public Vector3 m_PrevPosition = Vector3.zero;
public Vector3 m_EndOffset = Vector3.zero;
public Vector3 m_InitLocalPosition = Vector3.zero;
public Quaternion m_InitLocalRotation = Quaternion.identity;
}
List<Particle> m_Particles = new List<Particle>();
void Start()
{
SetupParticles();
}
void FixedUpdate()
{
if (m_UpdateMode == UpdateMode.AnimatePhysics)
PreUpdate();
}
void Update()
{
if (m_UpdateMode != UpdateMode.AnimatePhysics)
PreUpdate();
}
void LateUpdate()
{
if (m_DistantDisable)
CheckDistance();
if (m_Weight > 0 && !(m_DistantDisable && m_DistantDisabled))
{
#if UNITY_5_3_OR_NEWER
float dt = m_UpdateMode == UpdateMode.UnscaledTime ? Time.unscaledDeltaTime : Time.deltaTime;
#else
float dt = Time.deltaTime;
#endif
UpdateDynamicBones(dt);
}
}
void PreUpdate()
{
if (m_Weight > 0 && !(m_DistantDisable && m_DistantDisabled))
InitTransforms();
}
void CheckDistance()
{
Transform rt = m_ReferenceObject;
if (rt == null && Camera.main != null)
rt = Camera.main.transform;
if (rt != null)
{
float d = (rt.position - transform.position).sqrMagnitude;
bool disable = d > m_DistanceToObject * m_DistanceToObject;
if (disable != m_DistantDisabled)
{
if (!disable)
ResetParticlesPosition();
m_DistantDisabled = disable;
}
}
}
void OnEnable()
{
ResetParticlesPosition();
}
void OnDisable()
{
InitTransforms();
}
void OnValidate()
{
m_UpdateRate = Mathf.Max(m_UpdateRate, 0);
m_Damping = Mathf.Clamp01(m_Damping);
m_Elasticity = Mathf.Clamp01(m_Elasticity);
m_Stiffness = Mathf.Clamp01(m_Stiffness);
m_Inert = Mathf.Clamp01(m_Inert);
m_Friction = Mathf.Clamp01(m_Friction);
m_Radius = Mathf.Max(m_Radius, 0);
if (Application.isEditor && Application.isPlaying)
{
InitTransforms();
SetupParticles();
}
}
void OnDrawGizmosSelected()
{
if (!enabled || m_Root == null)
return;
if (Application.isEditor && !Application.isPlaying && transform.hasChanged)
{
InitTransforms();
SetupParticles();
}
Gizmos.color = Color.white;
for (int i = 0; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
if (p.m_ParentIndex >= 0)
{
Particle p0 = m_Particles[p.m_ParentIndex];
Gizmos.DrawLine(p.m_Position, p0.m_Position);
}
if (p.m_Radius > 0)
Gizmos.DrawWireSphere(p.m_Position, p.m_Radius * m_ObjectScale);
}
}
public void SetWeight(float w)
{
if (m_Weight != w)
{
if (w == 0)
InitTransforms();
else if (m_Weight == 0)
ResetParticlesPosition();
m_Weight = w;
}
}
public float GetWeight()
{
return m_Weight;
}
void UpdateDynamicBones(float t)
{
if (m_Root == null)
return;
m_ObjectScale = Mathf.Abs(transform.lossyScale.x);
m_ObjectMove = transform.position - m_ObjectPrevPosition;
m_ObjectPrevPosition = transform.position;
int loop = 1;
float timeVar = 1;
if (m_UpdateMode == UpdateMode.Default)
{
if (m_UpdateRate > 0)
{
timeVar = Time.deltaTime * m_UpdateRate;
}
else
{
timeVar = Time.deltaTime;
}
}
else
{
if (m_UpdateRate > 0)
{
float dt = 1.0f / m_UpdateRate;
m_Time += t;
loop = 0;
while (m_Time >= dt)
{
m_Time -= dt;
if (++loop >= 3)
{
m_Time = 0;
break;
}
}
}
}
if (loop > 0)
{
for (int i = 0; i < loop; ++i)
{
UpdateParticles1(timeVar);
UpdateParticles2(timeVar);
m_ObjectMove = Vector3.zero;
}
}
else
{
SkipUpdateParticles();
}
ApplyParticlesToTransforms();
}
public void SetupParticles()
{
m_Particles.Clear();
if (m_Root == null)
return;
m_LocalGravity = m_Root.InverseTransformDirection(m_Gravity);
m_ObjectScale = Mathf.Abs(transform.lossyScale.x);
m_ObjectPrevPosition = transform.position;
m_ObjectMove = Vector3.zero;
m_BoneTotalLength = 0;
AppendParticles(m_Root, -1, 0);
UpdateParameters();
}
void AppendParticles(Transform b, int parentIndex, float boneLength)
{
Particle p = new Particle();
p.m_Transform = b;
p.m_ParentIndex = parentIndex;
if (b != null)
{
p.m_Position = p.m_PrevPosition = b.position;
p.m_InitLocalPosition = b.localPosition;
p.m_InitLocalRotation = b.localRotation;
}
else // end bone
{
Transform pb = m_Particles[parentIndex].m_Transform;
if (m_EndLength > 0)
{
Transform ppb = pb.parent;
if (ppb != null)
p.m_EndOffset = pb.InverseTransformPoint((pb.position * 2 - ppb.position)) * m_EndLength;
else
p.m_EndOffset = new Vector3(m_EndLength, 0, 0);
}
else
{
p.m_EndOffset = pb.InverseTransformPoint(transform.TransformDirection(m_EndOffset) + pb.position);
}
p.m_Position = p.m_PrevPosition = pb.TransformPoint(p.m_EndOffset);
}
if (parentIndex >= 0)
{
boneLength += (m_Particles[parentIndex].m_Transform.position - p.m_Position).magnitude;
p.m_BoneLength = boneLength;
m_BoneTotalLength = Mathf.Max(m_BoneTotalLength, boneLength);
}
int index = m_Particles.Count;
m_Particles.Add(p);
if (b != null)
{
for (int i = 0; i < b.childCount; ++i)
{
Transform child = b.GetChild(i);
bool exclude = false;
if (m_Exclusions != null)
{
exclude = m_Exclusions.Contains(child);
}
if (!exclude)
AppendParticles(child, index, boneLength);
else if (m_EndLength > 0 || m_EndOffset != Vector3.zero)
AppendParticles(null, index, boneLength);
}
if (b.childCount == 0 && (m_EndLength > 0 || m_EndOffset != Vector3.zero))
AppendParticles(null, index, boneLength);
}
}
public void UpdateParameters()
{
if (m_Root == null)
return;
m_LocalGravity = m_Root.InverseTransformDirection(m_Gravity);
for (int i = 0; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
p.m_Damping = m_Damping;
p.m_Elasticity = m_Elasticity;
p.m_Stiffness = m_Stiffness;
p.m_Inert = m_Inert;
p.m_Friction = m_Friction;
p.m_Radius = m_Radius;
if (m_BoneTotalLength > 0)
{
float a = p.m_BoneLength / m_BoneTotalLength;
if (m_DampingDistrib != null && m_DampingDistrib.keys.Length > 0)
p.m_Damping *= m_DampingDistrib.Evaluate(a);
if (m_ElasticityDistrib != null && m_ElasticityDistrib.keys.Length > 0)
p.m_Elasticity *= m_ElasticityDistrib.Evaluate(a);
if (m_StiffnessDistrib != null && m_StiffnessDistrib.keys.Length > 0)
p.m_Stiffness *= m_StiffnessDistrib.Evaluate(a);
if (m_InertDistrib != null && m_InertDistrib.keys.Length > 0)
p.m_Inert *= m_InertDistrib.Evaluate(a);
if (m_FrictionDistrib != null && m_FrictionDistrib.keys.Length > 0)
p.m_Friction *= m_FrictionDistrib.Evaluate(a);
if (m_RadiusDistrib != null && m_RadiusDistrib.keys.Length > 0)
p.m_Radius *= m_RadiusDistrib.Evaluate(a);
}
p.m_Damping = Mathf.Clamp01(p.m_Damping);
p.m_Elasticity = Mathf.Clamp01(p.m_Elasticity);
p.m_Stiffness = Mathf.Clamp01(p.m_Stiffness);
p.m_Inert = Mathf.Clamp01(p.m_Inert);
p.m_Friction = Mathf.Clamp01(p.m_Friction);
p.m_Radius = Mathf.Max(p.m_Radius, 0);
}
}
void InitTransforms()
{
for (int i = 0; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
if (p.m_Transform != null)
{
p.m_Transform.localPosition = p.m_InitLocalPosition;
p.m_Transform.localRotation = p.m_InitLocalRotation;
}
}
}
void ResetParticlesPosition()
{
for (int i = 0; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
if (p.m_Transform != null)
{
p.m_Position = p.m_PrevPosition = p.m_Transform.position;
}
else // end bone
{
Transform pb = m_Particles[p.m_ParentIndex].m_Transform;
p.m_Position = p.m_PrevPosition = pb.TransformPoint(p.m_EndOffset);
}
p.m_isCollide = false;
}
m_ObjectPrevPosition = transform.position;
}
void UpdateParticles1(float timeVar)
{
Vector3 force = m_Gravity;
Vector3 fdir = m_Gravity.normalized;
Vector3 rf = m_Root.TransformDirection(m_LocalGravity);
Vector3 pf = fdir * Mathf.Max(Vector3.Dot(rf, fdir), 0); // project current gravity to rest gravity
force -= pf; // remove projected gravity
force = (force + m_Force) * (m_ObjectScale * timeVar);
for (int i = 0; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
if (p.m_ParentIndex >= 0)
{
// verlet integration
Vector3 v = p.m_Position - p.m_PrevPosition;
Vector3 rmove = m_ObjectMove * p.m_Inert;
p.m_PrevPosition = p.m_Position + rmove;
float damping = p.m_Damping;
if (p.m_isCollide)
{
damping += p.m_Friction;
if (damping > 1)
damping = 1;
p.m_isCollide = false;
}
p.m_Position += v * (1 - damping) + force + rmove;
}
else
{
p.m_PrevPosition = p.m_Position;
p.m_Position = p.m_Transform.position;
}
}
}
void UpdateParticles2(float timeVar)
{
Plane movePlane = new Plane();
for (int i = 1; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
Particle p0 = m_Particles[p.m_ParentIndex];
float restLen;
if (p.m_Transform != null)
restLen = (p0.m_Transform.position - p.m_Transform.position).magnitude;
else
restLen = p0.m_Transform.localToWorldMatrix.MultiplyVector(p.m_EndOffset).magnitude;
// keep shape
float stiffness = Mathf.Lerp(1.0f, p.m_Stiffness, m_Weight);
if (stiffness > 0 || p.m_Elasticity > 0)
{
Matrix4x4 m0 = p0.m_Transform.localToWorldMatrix;
m0.SetColumn(3, p0.m_Position);
Vector3 restPos;
if (p.m_Transform != null)
restPos = m0.MultiplyPoint3x4(p.m_Transform.localPosition);
else
restPos = m0.MultiplyPoint3x4(p.m_EndOffset);
Vector3 d = restPos - p.m_Position;
p.m_Position += d * (p.m_Elasticity * timeVar);
if (stiffness > 0)
{
d = restPos - p.m_Position;
float len = d.magnitude;
float maxlen = restLen * (1 - stiffness) * 2;
if (len > maxlen)
p.m_Position += d * ((len - maxlen) / len);
}
}
// collide
if (m_Colliders != null)
{
float particleRadius = p.m_Radius * m_ObjectScale;
for (int j = 0; j < m_Colliders.Count; ++j)
{
DynamicBoneColliderBase c = m_Colliders[j];
if (c != null && c.enabled)
p.m_isCollide |= c.Collide(ref p.m_Position, particleRadius);
}
}
// freeze axis, project to plane
if (m_FreezeAxis != FreezeAxis.None)
{
switch (m_FreezeAxis)
{
case FreezeAxis.X:
movePlane.SetNormalAndPosition(p0.m_Transform.right, p0.m_Position);
break;
case FreezeAxis.Y:
movePlane.SetNormalAndPosition(p0.m_Transform.up, p0.m_Position);
break;
case FreezeAxis.Z:
movePlane.SetNormalAndPosition(p0.m_Transform.forward, p0.m_Position);
break;
}
p.m_Position -= movePlane.normal * movePlane.GetDistanceToPoint(p.m_Position);
}
// keep length
Vector3 dd = p0.m_Position - p.m_Position;
float leng = dd.magnitude;
if (leng > 0)
p.m_Position += dd * ((leng - restLen) / leng);
}
}
// only update stiffness and keep bone length
void SkipUpdateParticles()
{
for (int i = 0; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
if (p.m_ParentIndex >= 0)
{
p.m_PrevPosition += m_ObjectMove;
p.m_Position += m_ObjectMove;
Particle p0 = m_Particles[p.m_ParentIndex];
float restLen;
if (p.m_Transform != null)
restLen = (p0.m_Transform.position - p.m_Transform.position).magnitude;
else
restLen = p0.m_Transform.localToWorldMatrix.MultiplyVector(p.m_EndOffset).magnitude;
// keep shape
float stiffness = Mathf.Lerp(1.0f, p.m_Stiffness, m_Weight);
if (stiffness > 0)
{
Matrix4x4 m0 = p0.m_Transform.localToWorldMatrix;
m0.SetColumn(3, p0.m_Position);
Vector3 restPos;
if (p.m_Transform != null)
restPos = m0.MultiplyPoint3x4(p.m_Transform.localPosition);
else
restPos = m0.MultiplyPoint3x4(p.m_EndOffset);
Vector3 d = restPos - p.m_Position;
float len = d.magnitude;
float maxlen = restLen * (1 - stiffness) * 2;
if (len > maxlen)
p.m_Position += d * ((len - maxlen) / len);
}
// keep length
Vector3 dd = p0.m_Position - p.m_Position;
float leng = dd.magnitude;
if (leng > 0)
p.m_Position += dd * ((leng - restLen) / leng);
}
else
{
p.m_PrevPosition = p.m_Position;
p.m_Position = p.m_Transform.position;
}
}
}
static Vector3 MirrorVector(Vector3 v, Vector3 axis)
{
return v - axis * (Vector3.Dot(v, axis) * 2);
}
void ApplyParticlesToTransforms()
{
#if !UNITY_5_4_OR_NEWER
// detect negative scale
Vector3 ax = Vector3.right;
Vector3 ay = Vector3.up;
Vector3 az = Vector3.forward;
bool nx = false, ny = false, nz = false;
Vector3 loosyScale = transform.lossyScale;
if (loosyScale.x < 0 || loosyScale.y < 0 || loosyScale.z < 0)
{
Transform mirrorObject = transform;
do
{
Vector3 ls = mirrorObject.localScale;
nx = ls.x < 0;
if (nx)
ax = mirrorObject.right;
ny = ls.y < 0;
if (ny)
ay = mirrorObject.up;
nz = ls.z < 0;
if (nz)
az = mirrorObject.forward;
if (nx || ny || nz)
break;
mirrorObject = mirrorObject.parent;
}
while (mirrorObject != null);
}
#endif
for (int i = 1; i < m_Particles.Count; ++i)
{
Particle p = m_Particles[i];
Particle p0 = m_Particles[p.m_ParentIndex];
if (p0.m_Transform.childCount <= 1) // do not modify bone orientation if has more then one child
{
Vector3 v;
if (p.m_Transform != null)
v = p.m_Transform.localPosition;
else
v = p.m_EndOffset;
Vector3 v2 = p.m_Position - p0.m_Position;
#if !UNITY_5_4_OR_NEWER
if (nx)
v2 = MirrorVector(v2, ax);
if (ny)
v2 = MirrorVector(v2, ay);
if (nz)
v2 = MirrorVector(v2, az);
#endif
Quaternion rot = Quaternion.FromToRotation(p0.m_Transform.TransformDirection(v), v2);
p0.m_Transform.rotation = rot * p0.m_Transform.rotation;
}
if (p.m_Transform != null)
p.m_Transform.position = p.m_Position;
}
}
}