using UnityEngine;
using System.Collections;
using System;
namespace RootMotion.FinalIK {
///
/// Rotates a hierarchy of bones to make a Transform aim at a target.
/// If there are problems with continuity and the solver get's jumpy, make sure to keep IKPosition at a safe distance from the transform and try decreasing solver and bone weights.
///
[System.Serializable]
public class IKSolverAim : IKSolverHeuristic {
#region Main Interface
///
/// The transform that we want to aim at IKPosition.
///
public Transform transform;
///
/// The local axis of the Transform that you want to be aimed at IKPosition.
///
public Vector3 axis = Vector3.forward;
///
/// Keeps that axis of the Aim Transform directed at the polePosition.
///
public Vector3 poleAxis = Vector3.up;
///
/// The position in world space to keep the pole axis of the Aim Transform directed at.
///
public Vector3 polePosition;
///
/// The weight of the Pole.
///
[Range(0f, 1f)]
public float poleWeight;
///
/// If assigned, will automatically set polePosition to the position of this Transform.
///
public Transform poleTarget;
///
/// Clamping rotation of the solver. 0 is free rotation, 1 is completely clamped to transform axis.
///
[Range(0f, 1f)]
public float clampWeight = 0.1f;
///
/// Number of sine smoothing iterations applied to clamping to make it smoother.
///
[Range(0, 2)]
public int clampSmoothing = 2;
///
/// Gets the angular offset.
///
public float GetAngle() {
return Vector3.Angle(transformAxis, IKPosition - transform.position);
}
///
/// Gets the Axis of the AimTransform is world space.
///
public Vector3 transformAxis {
get {
return transform.rotation * axis;
}
}
///
/// Gets the Pole Axis of the AimTransform is world space.
///
public Vector3 transformPoleAxis {
get {
return transform.rotation * poleAxis;
}
}
///
/// Called before each iteration of the solver.
///
public IterationDelegate OnPreIteration;
#endregion Main Interface
protected override void OnInitiate() {
if ((firstInitiation || !Application.isPlaying) && transform != null) {
IKPosition = transform.position + transformAxis * 3f;
polePosition = transform.position + transformPoleAxis * 3f;
}
// Disable Rotation Limits from updating to take control of their execution order
for (int i = 0; i < bones.Length; i++) {
if (bones[i].rotationLimit != null) bones[i].rotationLimit.Disable();
}
step = 1f / (float)bones.Length;
if (Application.isPlaying) axis = axis.normalized;
}
protected override void OnUpdate() {
if (axis == Vector3.zero) {
if (!Warning.logged) LogWarning("IKSolverAim axis is Vector3.zero.");
return;
}
if (poleAxis == Vector3.zero && poleWeight > 0f) {
if (!Warning.logged) LogWarning("IKSolverAim poleAxis is Vector3.zero.");
return;
}
if (target != null) IKPosition = target.position;
if (poleTarget != null) polePosition = poleTarget.position;
if (XY) IKPosition.z = bones[0].transform.position.z;
// Clamping weights
if (IKPositionWeight <= 0) return;
IKPositionWeight = Mathf.Clamp(IKPositionWeight, 0f, 1f);
// Rotation Limit on the Aim Transform
if (transform != lastTransform) {
transformLimit = transform.GetComponent();
if (transformLimit != null) transformLimit.enabled = false;
lastTransform = transform;
}
if (transformLimit != null) transformLimit.Apply();
// In case transform becomes unassigned in runtime
if (transform == null) {
if (!Warning.logged) LogWarning("Aim Transform unassigned in Aim IK solver. Please Assign a Transform (lineal descendant to the last bone in the spine) that you want to be aimed at IKPosition");
return;
}
clampWeight = Mathf.Clamp(clampWeight, 0f, 1f);
clampedIKPosition = GetClampedIKPosition();
Vector3 dir = clampedIKPosition - transform.position;
dir = Vector3.Slerp(transformAxis * dir.magnitude, dir, IKPositionWeight);
clampedIKPosition = transform.position + dir;
// Iterating the solver
for (int i = 0; i < maxIterations; i++) {
// Optimizations
if (i >= 1 && tolerance > 0 && GetAngle() < tolerance) break;
lastLocalDirection = localDirection;
if (OnPreIteration != null) OnPreIteration(i);
Solve();
}
lastLocalDirection = localDirection;
}
protected override int minBones { get { return 1; }}
private float step;
private Vector3 clampedIKPosition;
private RotationLimit transformLimit;
private Transform lastTransform;
/*
* Solving the hierarchy
* */
private void Solve() {
// Rotating bones to get closer to target.
for (int i = 0; i < bones.Length - 1; i++) RotateToTarget(clampedIKPosition, bones[i], step * (i + 1) * IKPositionWeight * bones[i].weight);
RotateToTarget(clampedIKPosition, bones[bones.Length - 1], IKPositionWeight * bones[bones.Length - 1].weight);
}
/*
* Clamping the IKPosition to legal range
* */
private Vector3 GetClampedIKPosition() {
if (clampWeight <= 0f) return IKPosition;
if (clampWeight >= 1f) return transform.position + transformAxis * (IKPosition - transform.position).magnitude;
// Getting the dot product of IK direction and transformAxis
//float dot = (Vector3.Dot(transformAxis, (IKPosition - transform.position).normalized) + 1) * 0.5f;
float angle = Vector3.Angle(transformAxis, (IKPosition - transform.position));
float dot = 1f - (angle / 180f);
// Clamping the target
float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the IK direction (don't use Lerp here, it breaks it)
return transform.position + Vector3.Slerp(transformAxis * 10f, IKPosition - transform.position, clampMlp * targetClampMlp);
}
/*
* Rotating bone to get transform aim closer to target
* */
private void RotateToTarget(Vector3 targetPosition, IKSolver.Bone bone, float weight) {
// Swing
if (XY) {
/*
if (weight >= 0f) {
Vector3 dir = transformAxis;
Vector3 targetDir = targetPosition - transform.position;
float angleDir = Mathf.Atan2(dir.x, dir.y) * Mathf.Rad2Deg;
float angleTarget = Mathf.Atan2(targetDir.x, targetDir.y) * Mathf.Rad2Deg;
bone.transform.rotation = Quaternion.AngleAxis((angleTarget - angleDir) * weight, Vector3.back) * bone.transform.rotation;
}
*/
if (weight >= 0f) {
Vector3 dir = transformAxis;
Vector3 targetDir = targetPosition - transform.position;
float angleDir = Mathf.Atan2(dir.x, dir.y) * Mathf.Rad2Deg;
float angleTarget = Mathf.Atan2(targetDir.x, targetDir.y) * Mathf.Rad2Deg;
bone.transform.rotation = Quaternion.AngleAxis(Mathf.DeltaAngle(angleDir, angleTarget), Vector3.back) * bone.transform.rotation;
}
} else {
if (weight >= 0f) {
Quaternion rotationOffset = Quaternion.FromToRotation(transformAxis, targetPosition - transform.position);
if (weight >= 1f) {
bone.transform.rotation = rotationOffset * bone.transform.rotation;
} else {
bone.transform.rotation = Quaternion.Lerp(Quaternion.identity, rotationOffset, weight) * bone.transform.rotation;
}
}
// Pole
if (poleWeight > 0f) {
Vector3 poleDirection = polePosition - transform.position;
// Ortho-normalize to transform axis to make this a twisting only operation
Vector3 poleDirOrtho = poleDirection;
Vector3 normal = transformAxis;
Vector3.OrthoNormalize(ref normal, ref poleDirOrtho);
Quaternion toPole = Quaternion.FromToRotation(transformPoleAxis, poleDirOrtho);
bone.transform.rotation = Quaternion.Lerp(Quaternion.identity, toPole, weight * poleWeight) * bone.transform.rotation;
}
}
if (useRotationLimits && bone.rotationLimit != null) bone.rotationLimit.Apply();
}
/*
* Gets the direction from last bone's forward in first bone's local space.
* */
protected override Vector3 localDirection {
get {
return bones[0].transform.InverseTransformDirection(bones[bones.Length - 1].transform.forward);
}
}
}
}