using UnityEngine;
using System.Collections;
using System;
namespace RootMotion.FinalIK {
///
/// CCD (Cyclic Coordinate Descent) constrainable heuristic inverse kinematics algorithm.
///
[System.Serializable]
public class IKSolverCCD : IKSolverHeuristic {
#region Main Interface
///
/// CCD tends to overemphasise the rotations of the bones closer to the target position. Reducing bone weight down the hierarchy will compensate for this effect.
///
public void FadeOutBoneWeights() {
if (bones.Length < 2) return;
bones[0].weight = 1f;
float step = 1f / (bones.Length - 1);
for (int i = 1; i < bones.Length; i++) {
bones[i].weight = step * (bones.Length - 1 - i);
}
}
///
/// Called before each iteration of the solver.
///
public IterationDelegate OnPreIteration;
#endregion Main Interface
protected override void OnInitiate() {
if (firstInitiation || !Application.isPlaying) IKPosition = bones[bones.Length - 1].transform.position;
InitiateBones();
}
protected override void OnUpdate() {
if (IKPositionWeight <= 0) return;
IKPositionWeight = Mathf.Clamp(IKPositionWeight, 0f, 1f);
if (target != null) IKPosition = target.position;
if (XY) IKPosition.z = bones[0].transform.position.z;
Vector3 singularityOffset = maxIterations > 1? GetSingularityOffset(): Vector3.zero;
// Iterating the solver
for (int i = 0; i < maxIterations; i++) {
// Optimizations
if (singularityOffset == Vector3.zero && i >= 1 && tolerance > 0 && positionOffset < tolerance * tolerance) break;
lastLocalDirection = localDirection;
if (OnPreIteration != null) OnPreIteration(i);
Solve(IKPosition + (i == 0? singularityOffset: Vector3.zero));
}
lastLocalDirection = localDirection;
}
/*
* Solve the CCD algorithm
* */
protected void Solve(Vector3 targetPosition) {
// 2D
if (XY) {
for (int i = bones.Length - 2; i > -1; i--) {
//CCD tends to overemphasise the rotations of the bones closer to the target position. Reducing bone weight down the hierarchy will compensate for this effect.
float w = bones[i].weight * IKPositionWeight;
if (w > 0f) {
Vector3 toLastBone = bones[bones.Length - 1].transform.position - bones[i].transform.position;
Vector3 toTarget = targetPosition - bones[i].transform.position;
float angleToLastBone = Mathf.Atan2(toLastBone.x, toLastBone.y) * Mathf.Rad2Deg;
float angleToTarget = Mathf.Atan2(toTarget.x, toTarget.y) * Mathf.Rad2Deg;
// Rotation to direct the last bone to the target
bones[i].transform.rotation = Quaternion.AngleAxis(Mathf.DeltaAngle(angleToLastBone, angleToTarget) * w, Vector3.back) * bones[i].transform.rotation;
}
// Rotation Constraints
if (useRotationLimits && bones[i].rotationLimit != null) bones[i].rotationLimit.Apply();
}
// 3D
} else {
for (int i = bones.Length - 2; i > -1; i--) {
// Slerp if weight is < 0
//CCD tends to overemphasise the rotations of the bones closer to the target position. Reducing bone weight down the hierarchy will compensate for this effect.
float w = bones[i].weight * IKPositionWeight;
if (w > 0f) {
Vector3 toLastBone = bones[bones.Length - 1].transform.position - bones[i].transform.position;
Vector3 toTarget = targetPosition - bones[i].transform.position;
// Get the rotation to direct the last bone to the target
Quaternion targetRotation = Quaternion.FromToRotation(toLastBone, toTarget) * bones[i].transform.rotation;
if (w >= 1) bones[i].transform.rotation = targetRotation;
else bones[i].transform.rotation = Quaternion.Lerp(bones[i].transform.rotation, targetRotation, w);
}
// Rotation Constraints
if (useRotationLimits && bones[i].rotationLimit != null) bones[i].rotationLimit.Apply();
}
}
}
}
}