using UnityEngine;
using System.Collections;
using System;
namespace RootMotion.FinalIK {
///
/// Forward and Backward Reaching Inverse Kinematics solver.
///
/// This class is based on the "FABRIK: A fast, iterative solver for the inverse kinematics problem." paper by Aristidou, A., Lasenby, J.
///
[System.Serializable]
public class IKSolverFABRIK : IKSolverHeuristic {
#region Main Interface
///
/// Solving stage 1 of the %FABRIK algorithm.
///
public void SolveForward(Vector3 position) {
if (!initiated) {
if (!Warning.logged) LogWarning("Trying to solve uninitiated FABRIK chain.");
return;
}
OnPreSolve();
ForwardReach(position);
}
///
/// Solving stage 2 of the %FABRIK algorithm.
///
public void SolveBackward(Vector3 position) {
if (!initiated) {
if (!Warning.logged) LogWarning("Trying to solve uninitiated FABRIK chain.");
return;
}
BackwardReach(position);
OnPostSolve();
}
public override Vector3 GetIKPosition() {
if (target != null) return target.position;
return IKPosition;
}
///
/// Called before each iteration of the solver.
///
public IterationDelegate OnPreIteration;
#endregion Main Interface
private bool[] limitedBones = new bool[0];
private Vector3[] solverLocalPositions = new Vector3[0];
protected override void OnInitiate() {
if (firstInitiation || !Application.isPlaying) IKPosition = bones[bones.Length - 1].transform.position;
for (int i = 0; i < bones.Length; i++) {
bones[i].solverPosition = bones[i].transform.position;
bones[i].solverRotation = bones[i].transform.rotation;
}
limitedBones = new bool[bones.Length];
solverLocalPositions = new Vector3[bones.Length];
InitiateBones();
for (int i = 0; i < bones.Length; i++) {
solverLocalPositions[i] = Quaternion.Inverse(GetParentSolverRotation(i)) * (bones[i].transform.position - GetParentSolverPosition(i));
}
}
protected override void OnUpdate() {
if (IKPositionWeight <= 0) return;
IKPositionWeight = Mathf.Clamp(IKPositionWeight, 0f, 1f);
OnPreSolve();
if (target != null) IKPosition = target.position;
if (XY) IKPosition.z = bones[0].transform.position.z;
Vector3 singularityOffset = maxIterations > 1? GetSingularityOffset(): Vector3.zero;
// Iterating the solver
for (int i = 0; i < maxIterations; i++) {
// Optimizations
if (singularityOffset == Vector3.zero && i >= 1 && tolerance > 0 && positionOffset < tolerance * tolerance) break;
lastLocalDirection = localDirection;
if (OnPreIteration != null) OnPreIteration(i);
Solve(IKPosition + (i == 0? singularityOffset: Vector3.zero));
}
OnPostSolve();
}
/*
* If true, the solver will work with 0 length bones
* */
protected override bool boneLengthCanBeZero { get { return false; }} // Returning false here also ensures that the bone lengths will be calculated
/*
* Interpolates the joint position to match the bone's length
*/
private Vector3 SolveJoint(Vector3 pos1, Vector3 pos2, float length) {
if (XY) pos1.z = pos2.z;
return pos2 + (pos1 - pos2).normalized * length;
}
/*
* Check if bones have moved from last solved positions
* */
private void OnPreSolve() {
chainLength = 0;
for (int i = 0; i < bones.Length; i++) {
bones[i].solverPosition = bones[i].transform.position;
bones[i].solverRotation = bones[i].transform.rotation;
if (i < bones.Length - 1) {
bones[i].length = (bones[i].transform.position - bones[i + 1].transform.position).magnitude;
bones[i].axis = Quaternion.Inverse(bones[i].transform.rotation) * (bones[i + 1].transform.position - bones[i].transform.position);
chainLength += bones[i].length;
}
if (useRotationLimits) solverLocalPositions[i] = Quaternion.Inverse(GetParentSolverRotation(i)) * (bones[i].transform.position - GetParentSolverPosition(i));
}
}
/*
* After solving the chain
* */
private void OnPostSolve() {
// Rotating bones to match the solver positions
if (!useRotationLimits) MapToSolverPositions();
else MapToSolverPositionsLimited();
lastLocalDirection = localDirection;
}
private void Solve(Vector3 targetPosition) {
// Forward reaching
ForwardReach(targetPosition);
// Backward reaching
BackwardReach(bones[0].transform.position);
}
/*
* Stage 1 of FABRIK algorithm
* */
private void ForwardReach(Vector3 position) {
// Lerp last bone's solverPosition to position
bones[bones.Length - 1].solverPosition = Vector3.Lerp(bones[bones.Length - 1].solverPosition, position, IKPositionWeight);
for (int i = 0; i < limitedBones.Length; i++) limitedBones[i] = false;
for (int i = bones.Length - 2; i > -1; i--) {
// Finding joint positions
bones[i].solverPosition = SolveJoint(bones[i].solverPosition, bones[i + 1].solverPosition, bones[i].length);
// Limiting bone rotation forward
LimitForward(i, i + 1);
}
// Limiting the first bone's rotation
LimitForward(0, 0);
}
private void SolverMove(int index, Vector3 offset) {
for (int i = index; i < bones.Length; i++) {
bones[i].solverPosition += offset;
}
}
private void SolverRotate(int index, Quaternion rotation, bool recursive) {
for (int i = index; i < bones.Length; i++) {
bones[i].solverRotation = rotation * bones[i].solverRotation;
if (!recursive) return;
}
}
private void SolverRotateChildren(int index, Quaternion rotation) {
for (int i = index + 1; i < bones.Length; i++) {
bones[i].solverRotation = rotation * bones[i].solverRotation;
}
}
private void SolverMoveChildrenAroundPoint(int index, Quaternion rotation) {
for (int i = index + 1; i < bones.Length; i++) {
Vector3 dir = bones[i].solverPosition - bones[index].solverPosition;
bones[i].solverPosition = bones[index].solverPosition + rotation * dir;
}
}
private Quaternion GetParentSolverRotation(int index) {
if (index > 0) return bones[index - 1].solverRotation;
if (bones[0].transform.parent == null) return Quaternion.identity;
return bones[0].transform.parent.rotation;
}
private Vector3 GetParentSolverPosition(int index) {
if (index > 0) return bones[index - 1].solverPosition;
if (bones[0].transform.parent == null) return Vector3.zero;
return bones[0].transform.parent.position;
}
private Quaternion GetLimitedRotation(int index, Quaternion q, out bool changed) {
changed = false;
Quaternion parentRotation = GetParentSolverRotation(index);
Quaternion localRotation = Quaternion.Inverse(parentRotation) * q;
Quaternion limitedLocalRotation = bones[index].rotationLimit.GetLimitedLocalRotation(localRotation, out changed);
if (!changed) return q;
return parentRotation * limitedLocalRotation;
}
/*
* Applying rotation limit to a bone in stage 1 in a more stable way
* */
private void LimitForward(int rotateBone, int limitBone) {
if (!useRotationLimits) return;
if (bones[limitBone].rotationLimit == null) return;
// Storing last bone's position before applying the limit
Vector3 lastBoneBeforeLimit = bones[bones.Length - 1].solverPosition;
// Moving and rotating this bone and all its children to their solver positions
for (int i = rotateBone; i < bones.Length - 1; i++) {
if (limitedBones[i]) break;
Quaternion fromTo = Quaternion.FromToRotation(bones[i].solverRotation * bones[i].axis, bones[i + 1].solverPosition - bones[i].solverPosition);
SolverRotate(i, fromTo, false);
}
// Limit the bone's rotation
bool changed = false;
Quaternion afterLimit = GetLimitedRotation(limitBone, bones[limitBone].solverRotation, out changed);
if (changed) {
// Rotating and positioning the hierarchy so that the last bone's position is maintained
if (limitBone < bones.Length - 1) {
Quaternion change = QuaTools.FromToRotation(bones[limitBone].solverRotation, afterLimit);
bones[limitBone].solverRotation = afterLimit;
SolverRotateChildren(limitBone, change);
SolverMoveChildrenAroundPoint(limitBone, change);
// Rotating to compensate for the limit
Quaternion fromTo = Quaternion.FromToRotation(bones[bones.Length - 1].solverPosition - bones[rotateBone].solverPosition, lastBoneBeforeLimit - bones[rotateBone].solverPosition);
SolverRotate(rotateBone, fromTo, true);
SolverMoveChildrenAroundPoint(rotateBone, fromTo);
// Moving the bone so that last bone maintains it's initial position
SolverMove(rotateBone, lastBoneBeforeLimit - bones[bones.Length - 1].solverPosition);
} else {
// last bone
bones[limitBone].solverRotation = afterLimit;
}
}
limitedBones[limitBone] = true;
}
/*
* Stage 2 of FABRIK algorithm
* */
private void BackwardReach(Vector3 position) {
if (useRotationLimits) BackwardReachLimited(position);
else BackwardReachUnlimited(position);
}
/*
* Stage 2 of FABRIK algorithm without rotation limits
* */
private void BackwardReachUnlimited(Vector3 position) {
// Move first bone to position
bones[0].solverPosition = position;
// Finding joint positions
for (int i = 1; i < bones.Length; i++) {
bones[i].solverPosition = SolveJoint(bones[i].solverPosition, bones[i - 1].solverPosition, bones[i - 1].length);
}
}
/*
* Stage 2 of FABRIK algorithm with limited rotations
* */
private void BackwardReachLimited(Vector3 position) {
// Move first bone to position
bones[0].solverPosition = position;
// Applying rotation limits bone by bone
for (int i = 0; i < bones.Length - 1; i++) {
// Rotating bone to look at the solved joint position
Vector3 nextPosition = SolveJoint(bones[i + 1].solverPosition, bones[i].solverPosition, bones[i].length);
Quaternion swing = Quaternion.FromToRotation(bones[i].solverRotation * bones[i].axis, nextPosition - bones[i].solverPosition);
Quaternion targetRotation = swing * bones[i].solverRotation;
// Rotation Constraints
if (bones[i].rotationLimit != null) {
bool changed = false;
targetRotation = GetLimitedRotation(i, targetRotation, out changed);
}
Quaternion fromTo = QuaTools.FromToRotation(bones[i].solverRotation, targetRotation);
bones[i].solverRotation = targetRotation;
SolverRotateChildren(i, fromTo);
// Positioning the next bone to its default local position
bones[i + 1].solverPosition = bones[i].solverPosition + bones[i].solverRotation * solverLocalPositions[i + 1];
}
// Reconstruct solver rotations to protect from invalid Quaternions
for (int i = 0; i < bones.Length; i++) {
bones[i].solverRotation = Quaternion.LookRotation(bones[i].solverRotation * Vector3.forward, bones[i].solverRotation * Vector3.up);
}
}
/*
* Rotate bones to match the solver positions when not using Rotation Limits
* */
private void MapToSolverPositions() {
bones[0].transform.position = bones[0].solverPosition;
for (int i = 0; i < bones.Length - 1; i++) {
if (XY) {
bones[i].Swing2D(bones[i + 1].solverPosition);
} else {
bones[i].Swing(bones[i + 1].solverPosition);
}
}
}
/*
* Rotate bones to match the solver positions when using Rotation Limits
* */
private void MapToSolverPositionsLimited() {
bones[0].transform.position = bones[0].solverPosition;
for (int i = 0; i < bones.Length; i++) {
if (i < bones.Length - 1) bones[i].transform.rotation = bones[i].solverRotation;
}
}
}
}