using UnityEngine;
using System.Collections;
namespace RootMotion.Demos {
///
/// The base abstract class for all character controllers, provides common functionality.
///
[RequireComponent(typeof(Rigidbody))]
[RequireComponent(typeof(CapsuleCollider))]
public abstract class CharacterBase: MonoBehaviour {
[Header("Base Parameters")]
[Tooltip("If specified, will use the direction from the character to this Transform as the gravity vector instead of Physics.gravity. Physics.gravity.magnitude will be used as the magnitude of the gravity vector.")]
public Transform gravityTarget;
[Tooltip("Multiplies gravity applied to the character even if 'Individual Gravity' is unchecked.")]
public float gravityMultiplier = 2f; // gravity modifier - often higher than natural gravity feels right for game characters
public float airborneThreshold = 0.6f; // Height from ground after which the character is considered airborne
public float slopeStartAngle = 50f; // The start angle of velocity dampering on slopes
public float slopeEndAngle = 85f; // The end angle of velocity dampering on slopes
public float spherecastRadius = 0.1f; // The radius of sperecasting
public LayerMask groundLayers; // The walkable layers
private PhysicMaterial zeroFrictionMaterial;
private PhysicMaterial highFrictionMaterial;
protected Rigidbody r;
protected const float half = 0.5f;
protected float originalHeight;
protected Vector3 originalCenter;
protected CapsuleCollider capsule;
public abstract void Move(Vector3 deltaPosition, Quaternion deltaRotation);
protected Vector3 GetGravity() {
if (gravityTarget != null) {
return (gravityTarget.position - transform.position).normalized * Physics.gravity.magnitude;
}
return Physics.gravity;
}
protected virtual void Start() {
capsule = GetComponent() as CapsuleCollider;
r = GetComponent();
// Store the collider volume
originalHeight = capsule.height;
originalCenter = capsule.center;
// Physics materials
zeroFrictionMaterial = new PhysicMaterial();
zeroFrictionMaterial.dynamicFriction = 0f;
zeroFrictionMaterial.staticFriction = 0f;
zeroFrictionMaterial.frictionCombine = PhysicMaterialCombine.Minimum;
zeroFrictionMaterial.bounciness = 0f;
zeroFrictionMaterial.bounceCombine = PhysicMaterialCombine.Minimum;
highFrictionMaterial = new PhysicMaterial();
// Making sure rigidbody rotation is fixed
r.constraints = RigidbodyConstraints.FreezeRotationX | RigidbodyConstraints.FreezeRotationY | RigidbodyConstraints.FreezeRotationZ;
}
// Spherecast from the root to find ground height
protected virtual RaycastHit GetSpherecastHit() {
Vector3 up = transform.up;
Ray ray = new Ray (r.position + up * airborneThreshold, -up);
RaycastHit h = new RaycastHit();
h.point = transform.position - transform.transform.up * airborneThreshold;
h.normal = transform.up;
Physics.SphereCast(ray, spherecastRadius, out h, airborneThreshold * 2f, groundLayers);
return h;
}
// Gets angle around y axis from a world space direction
public float GetAngleFromForward(Vector3 worldDirection) {
Vector3 local = transform.InverseTransformDirection(worldDirection);
return Mathf.Atan2 (local.x, local.z) * Mathf.Rad2Deg;
}
// Rotate a rigidbody around a point and axis by angle
protected void RigidbodyRotateAround(Vector3 point, Vector3 axis, float angle) {
Quaternion rotation = Quaternion.AngleAxis(angle, axis);
Vector3 d = transform.position - point;
r.MovePosition(point + rotation * d);
r.MoveRotation(rotation * transform.rotation);
}
// Scale the capsule collider to 'mlp' of the initial value
protected void ScaleCapsule (float mlp) {
if (capsule.height != originalHeight * mlp) {
capsule.height = Mathf.MoveTowards (capsule.height, originalHeight * mlp, Time.deltaTime * 4);
capsule.center = Vector3.MoveTowards (capsule.center, originalCenter * mlp, Time.deltaTime * 2);
}
}
// Set the collider to high friction material
protected void HighFriction() {
capsule.material = highFrictionMaterial;
}
// Set the collider to zero friction material
protected void ZeroFriction() {
capsule.material = zeroFrictionMaterial;
}
// Get the damper of velocity on the slopes
protected float GetSlopeDamper(Vector3 velocity, Vector3 groundNormal) {
float angle = 90f - Vector3.Angle(velocity, groundNormal);
angle -= slopeStartAngle;
float range = slopeEndAngle - slopeStartAngle;
return 1f - Mathf.Clamp(angle / range, 0f, 1f);
}
}
}