holopy3/Assets/Plugins/RootMotion/Shared Scripts/Interp.cs
2020-12-10 15:25:12 +01:00

363 lines
9 KiB
C#

using UnityEngine;
using System.Collections;
namespace RootMotion {
/// <summary>
/// Interpolation mode.
/// </summary>
[System.Serializable]
public enum InterpolationMode
{
None,
InOutCubic,
InOutQuintic,
InOutSine,
InQuintic,
InQuartic,
InCubic,
InQuadratic,
InElastic,
InElasticSmall,
InElasticBig,
InSine,
InBack,
OutQuintic,
OutQuartic,
OutCubic,
OutInCubic,
OutInQuartic,
OutElastic,
OutElasticSmall,
OutElasticBig,
OutSine,
OutBack,
OutBackCubic,
OutBackQuartic,
BackInCubic,
BackInQuartic,
};
/// <summary>
/// Class for various interpolation methods.
/// </summary>
public class Interp
{
#region Public methods
/// <summary>
/// Interpolate the specified t by InterpolationMode mode.
/// </summary>
/// <param name='t'>
/// T.
/// </param>
/// <param name='mode'>
/// InterpolationMode.
/// </param>
public static float Float(float t, InterpolationMode mode) {
float interpT = 0;
switch (mode) {
case InterpolationMode.None:
interpT = Interp.None(t, 0, 1);
break;
case InterpolationMode.InOutCubic:
interpT = Interp.InOutCubic(t, 0, 1);
break;
case InterpolationMode.InOutQuintic:
interpT = Interp.InOutQuintic(t, 0, 1);
break;
case InterpolationMode.InQuintic:
interpT = Interp.InQuintic(t, 0, 1);
break;
case InterpolationMode.InQuartic:
interpT = Interp.InQuartic(t, 0, 1);
break;
case InterpolationMode.InCubic:
interpT = Interp.InCubic(t, 0, 1);
break;
case InterpolationMode.InQuadratic:
interpT = Interp.InQuadratic(t, 0, 1);
break;
case InterpolationMode.OutQuintic:
interpT = Interp.OutQuintic(t, 0, 1);
break;
case InterpolationMode.OutQuartic:
interpT = Interp.OutQuartic(t, 0, 1);
break;
case InterpolationMode.OutCubic:
interpT = Interp.OutCubic(t, 0, 1);
break;
case InterpolationMode.OutInCubic:
interpT = Interp.OutInCubic(t, 0, 1);
break;
case InterpolationMode.OutInQuartic:
interpT = Interp.OutInCubic(t, 0, 1);
break;
case InterpolationMode.BackInCubic:
interpT = Interp.BackInCubic(t, 0, 1);
break;
case InterpolationMode.BackInQuartic:
interpT = Interp.BackInQuartic(t, 0, 1);
break;
case InterpolationMode.OutBackCubic:
interpT = Interp.OutBackCubic(t, 0, 1);
break;
case InterpolationMode.OutBackQuartic:
interpT = Interp.OutBackQuartic(t, 0, 1);
break;
case InterpolationMode.OutElasticSmall:
interpT = Interp.OutElasticSmall(t, 0, 1);
break;
case InterpolationMode.OutElasticBig:
interpT = Interp.OutElasticBig(t, 0, 1);
break;
case InterpolationMode.InElasticSmall:
interpT = Interp.InElasticSmall(t, 0, 1);
break;
case InterpolationMode.InElasticBig:
interpT = Interp.InElasticBig(t, 0, 1);
break;
case InterpolationMode.InSine:
interpT = Interp.InSine(t, 0, 1);
break;
case InterpolationMode.OutSine:
interpT = Interp.OutSine(t, 0, 1);
break;
case InterpolationMode.InOutSine:
interpT = Interp.InOutSine(t, 0, 1);
break;
case InterpolationMode.InElastic:
interpT = Interp.OutElastic(t, 0, 1);
break;
case InterpolationMode.OutElastic:
interpT = Interp.OutElastic(t, 0, 1);
break;
case InterpolationMode.InBack:
interpT = Interp.InBack(t, 0, 1);
break;
case InterpolationMode.OutBack:
interpT = Interp.OutBack(t, 0, 1);
break;
default: interpT = 0;
break;
}
return interpT;
}
/// <summary>
/// Interpolate between two verctors by InterpolationMode mode
/// </summary>
public static Vector3 V3(Vector3 v1, Vector3 v2, float t, InterpolationMode mode) {
float interpT = Interp.Float(t, mode);
return ((1 - interpT) * v1) + (interpT * v2);
}
/// <summary>
/// Linear interpolation of value towards target.
/// </summary>
public static float LerpValue(float value, float target, float increaseSpeed, float decreaseSpeed) {
if (value == target) return target;
if (value < target) return Mathf.Clamp(value + Time.deltaTime * increaseSpeed, -Mathf.Infinity, target);
else return Mathf.Clamp(value - Time.deltaTime * decreaseSpeed, target, Mathf.Infinity);
}
#endregion Public methods
#region Interpolation modes
private static float None (float t, float b, float c) { // time, b, distance,
return b + c * (t);
}
private static float InOutCubic(float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (-2 * tc + 3 * ts);
}
private static float InOutQuintic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (6 * tc * ts + -15 * ts * ts + 10 * tc);
}
private static float InQuintic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (tc * ts);
}
private static float InQuartic (float t, float b, float c) {
float ts = t * t;
return b + c * (ts * ts);
}
private static float InCubic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (tc);
}
private static float InQuadratic (float t, float b, float c) {
float ts = t * t;
return b + c * (ts);
}
private static float OutQuintic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (tc * ts + -5 * ts * ts + 10 * tc + -10 * ts + 5 * t);
}
private static float OutQuartic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (-1 * ts * ts + 4 * tc + -6 * ts + 4 * t);
}
private static float OutCubic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (tc + -3 * ts + 3 * t);
}
private static float OutInCubic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (4 * tc + -6 * ts + 3 * t);
}
private static float OutInQuartic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (6 * tc + -9 * ts + 4 * t);
}
private static float BackInCubic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c *(4 * tc + -3 * ts);
}
private static float BackInQuartic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (2 * ts * ts + 2 * tc + -3 * ts);
}
private static float OutBackCubic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (4 * tc + -9 * ts + 6 * t);
}
private static float OutBackQuartic (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (-2 * ts * ts + 10 * tc + -15 * ts + 8 * t);
}
private static float OutElasticSmall (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (33 * tc * ts + -106 * ts * ts + 126 * tc + -67 * ts + 15 * t);
}
private static float OutElasticBig (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b+c*(56*tc*ts + -175*ts*ts + 200*tc + -100*ts + 20*t);
}
private static float InElasticSmall (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (33 * tc * ts + -59 * ts * ts + 32 * tc + -5 * ts);
}
private static float InElasticBig (float t, float b, float c) {
float ts = t * t;
float tc = ts * t;
return b + c * (56 * tc * ts + -105 * ts * ts + 60 * tc + -10 * ts);
}
private static float InSine (float t, float b, float c) {
c -= b;
return -c * Mathf.Cos(t / 1 * (Mathf.PI / 2)) + c + b;
}
private static float OutSine (float t, float b, float c) {
c -= b;
return c * Mathf.Sin(t / 1 * (Mathf.PI / 2)) + b;
}
private static float InOutSine (float t, float b, float c) {
c -= b;
return -c / 2 * (Mathf.Cos(Mathf.PI * t / 1) - 1) + b;
}
private static float InElastic (float t, float b, float c) {
c -= b;
float d = 1f;
float p = d * .3f;
float s = 0;
float a = 0;
if (t == 0) return b;
if ((t /= d) == 1) return b + c;
if (a == 0f || a < Mathf.Abs(c)){
a = c;
s = p / 4;
}else{
s = p / (2 * Mathf.PI) * Mathf.Asin(c / a);
}
return -(a * Mathf.Pow(2, 10 * (t-=1)) * Mathf.Sin((t * d - s) * (2 * Mathf.PI) / p)) + b;
}
private static float OutElastic (float t, float b, float c) {
c -= b;
float d = 1f;
float p = d * .3f;
float s = 0;
float a = 0;
if (t == 0) return b;
if ((t /= d) == 1) return b + c;
if (a == 0f || a < Mathf.Abs(c)){
a = c;
s = p / 4;
}else{
s = p / (2 * Mathf.PI) * Mathf.Asin(c / a);
}
return (a * Mathf.Pow(2, -10 * t) * Mathf.Sin((t * d - s) * (2 * Mathf.PI) / p) + c + b);
}
private static float InBack(float t, float b, float c){
c -= b;
t /= 1;
float s = 1.70158f;
return c * (t) * t * ((s + 1) * t - s) + b;
}
private static float OutBack (float t, float b, float c) {
float s = 1.70158f;
c -= b;
t = (t / 1) - 1;
return c * ((t) * t * ((s + 1) * t + s) + 1) + b;
}
#endregion Interpolation modes
}
}