holopy3/Assets/Plugins/RootMotion/Shared Scripts/V3Tools.cs
2020-12-10 15:25:12 +01:00

201 lines
6.8 KiB
C#

using UnityEngine;
using System.Collections;
namespace RootMotion {
/// <summary>
/// Helper methods for dealing with 3-dimensional vectors.
/// </summary>
public static class V3Tools {
/// <summary>
/// Optimized Vector3.Lerp
/// </summary>
public static Vector3 Lerp(Vector3 fromVector, Vector3 toVector, float weight) {
if (weight <= 0f) return fromVector;
if (weight >= 1f) return toVector;
return Vector3.Lerp(fromVector, toVector, weight);
}
/// <summary>
/// Optimized Vector3.Slerp
/// </summary>
public static Vector3 Slerp(Vector3 fromVector, Vector3 toVector, float weight) {
if (weight <= 0f) return fromVector;
if (weight >= 1f) return toVector;
return Vector3.Slerp(fromVector, toVector, weight);
}
/// <summary>
/// Returns vector projection on axis multiplied by weight.
/// </summary>
public static Vector3 ExtractVertical(Vector3 v, Vector3 verticalAxis, float weight) {
if (weight == 0f) return Vector3.zero;
return Vector3.Project(v, verticalAxis) * weight;
}
/// <summary>
/// Returns vector projected to a plane and multiplied by weight.
/// </summary>
public static Vector3 ExtractHorizontal(Vector3 v, Vector3 normal, float weight) {
if (weight == 0f) return Vector3.zero;
Vector3 tangent = v;
Vector3.OrthoNormalize(ref normal, ref tangent);
return Vector3.Project(v, tangent) * weight;
}
/// <summary>
/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
/// </summary>
public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing)
{
if (clampWeight <= 0) return direction;
if (clampWeight >= 1f) return normalDirection;
// Getting the angle between direction and normalDirection
float angle = Vector3.Angle(normalDirection, direction);
float dot = 1f - (angle / 180f);
if (dot > clampWeight) return direction;
// Clamping the target
float targetClampMlp = clampWeight > 0 ? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f) : 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0 ? Mathf.Clamp(dot / clampWeight, 0f, 1f) : 1f;
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++)
{
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the direction (don't use Lerp here, it breaks it)
return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp);
}
/// <summary>
/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
/// </summary>
public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out bool changed) {
changed = false;
if (clampWeight <= 0) return direction;
if (clampWeight >= 1f) {
changed = true;
return normalDirection;
}
// Getting the angle between direction and normalDirection
float angle = Vector3.Angle(normalDirection, direction);
float dot = 1f - (angle / 180f);
if (dot > clampWeight) return direction;
changed = true;
// Clamping the target
float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the direction (don't use Lerp here, it breaks it)
return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp);
}
/// <summary>
/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
/// </summary>
public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out float clampValue) {
clampValue = 1f;
if (clampWeight <= 0) return direction;
if (clampWeight >= 1f) {
return normalDirection;
}
// Getting the angle between direction and normalDirection
float angle = Vector3.Angle(normalDirection, direction);
float dot = 1f - (angle / 180f);
if (dot > clampWeight) {
clampValue = 0f;
return direction;
}
// Clamping the target
float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the direction (don't use Lerp here, it breaks it)
float slerp = clampMlp * targetClampMlp;
clampValue = 1f - slerp;
return Vector3.Slerp(normalDirection, direction, slerp);
}
/// <summary>
/// Get the intersection point of line and plane
/// </summary>
public static Vector3 LineToPlane(Vector3 origin, Vector3 direction, Vector3 planeNormal, Vector3 planePoint) {
float dot = Vector3.Dot(planePoint - origin, planeNormal);
float normalDot = Vector3.Dot(direction, planeNormal);
if (normalDot == 0.0f) return Vector3.zero;
float dist = dot / normalDot;
return origin + direction.normalized * dist;
}
/// <summary>
/// Projects a point to a plane.
/// </summary>
public static Vector3 PointToPlane(Vector3 point, Vector3 planePosition, Vector3 planeNormal) {
if (planeNormal == Vector3.up) {
return new Vector3(point.x, planePosition.y, point.z);
}
Vector3 tangent = point - planePosition;
Vector3 normal = planeNormal;
Vector3.OrthoNormalize(ref normal, ref tangent);
return planePosition + Vector3.Project(point - planePosition, tangent);
}
/// <summary>
/// Same as Transform.TransformPoint(), but not using scale.
/// </summary>
public static Vector3 TransformPointUnscaled(Transform t, Vector3 point)
{
return t.position + t.rotation * point;
}
/// <summary>
/// Same as Transform.InverseTransformPoint(), but not using scale.
/// </summary>
public static Vector3 InverseTransformPointUnscaled(Transform t, Vector3 point)
{
return Quaternion.Inverse(t.rotation) * (point - t.position);
}
}
}