using Microsoft.Azure.Kinect.Sensor; using System; using System.Runtime.InteropServices; using System.Threading.Tasks; namespace Akvfx { // // Per pixel ray direction table ("XY table") used to unproject depth // samples to the 3D camera space // // This class directly invokes a native method (k4a_calibration_2d_to_3d) // contained in libk4a to avoid double symbol definition problem between // System.Numerics and System.Numerics.Vectors. // sealed class XYTable { // Public property: Table data public ReadOnlySpan<float> Data { get { return _data; } } // Float vvector types struct Float2 { public float x, y; } struct Float3 { public float x, y, z; } // Data storage float [] _data; // Constructor public XYTable(Calibration calibration, int width, int height) { // Data storage allocation var table = new float [width * height * 2]; // XY table initialization // These loops could take a significant amount of time (e.g. 1 sec) // even on a decent desktop PC. Luckily, this can be easily // parallelized by using Parallel.For, so we did. Parallel.For(0, height, y => { Float2 v2; Float3 v3; bool isValid; v2.y = y; var offs = width * 2 * y; for (var x = 0; x < width; x++) { v2.x = x; k4a_calibration_2d_to_3d( ref calibration, ref v2, 1, CalibrationDeviceType.Color, CalibrationDeviceType.Color, out v3, out isValid ); table[offs++] = v3.x; table[offs++] = v3.y; } }); // Publish the table data. _data = table; } // k4a_calibration_2d_to_3d native method from libk4a [DllImport("k4a", CallingConvention = CallingConvention.Cdecl)] static extern int k4a_calibration_2d_to_3d( [In] ref Calibration calibration, ref Float2 source_point2d, float source_depth, CalibrationDeviceType source_camera, CalibrationDeviceType target_camera, out Float3 target_point3d, out bool valid ); } }