#ifdef GL_ES precision mediump float; #endif uniform sampler2D u_depth; uniform sampler2D u_world; uniform ivec2 uFrameSize; uniform ivec2 uDepthFrameSize; uniform sampler2D u_buffer0; uniform sampler2D u_buffer1; uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform bool u_init; varying vec2 v_texcoord; vec3 random3(vec3 c) { float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0))); vec3 r; r.z = fract(512.0*j); j *= .125; r.x = fract(512.0*j); j *= .125; r.y = fract(512.0*j); return r-0.5; } /* skew constants for 3d simplex functions */ const float F3 = 0.3333333; const float G3 = 0.1666667; /* 3d simplex noise */ float simplex3d(vec3 p) { /* 1. find current tetrahedron T and it's four vertices */ /* s, s+i1, s+i2, s+1.0 - absolute skewed (integer) coordinates of T vertices */ /* x, x1, x2, x3 - unskewed coordinates of p relative to each of T vertices*/ /* calculate s and x */ vec3 s = floor(p + dot(p, vec3(F3))); vec3 x = p - s + dot(s, vec3(G3)); /* calculate i1 and i2 */ vec3 e = step(vec3(0.0), x - x.yzx); vec3 i1 = e*(1.0 - e.zxy); vec3 i2 = 1.0 - e.zxy*(1.0 - e); /* x1, x2, x3 */ vec3 x1 = x - i1 + G3; vec3 x2 = x - i2 + 2.0*G3; vec3 x3 = x - 1.0 + 3.0*G3; /* 2. find four surflets and store them in d */ vec4 w, d; /* calculate surflet weights */ w.x = dot(x, x); w.y = dot(x1, x1); w.z = dot(x2, x2); w.w = dot(x3, x3); /* w fades from 0.6 at the center of the surflet to 0.0 at the margin */ w = max(0.6 - w, 0.0); /* calculate surflet components */ d.x = dot(random3(s), x); d.y = dot(random3(s + i1), x1); d.z = dot(random3(s + i2), x2); d.w = dot(random3(s + 1.0), x3); /* multiply d by w^4 */ w *= w; w *= w; d *= w; /* 3. return the sum of the four surflets */ return dot(d, vec4(52.0)); } /* const matrices for 3d rotation */ const mat3 rot1 = mat3(-0.37, 0.36, 0.85,-0.14,-0.93, 0.34,0.92, 0.01,0.4); const mat3 rot2 = mat3(-0.55,-0.39, 0.74, 0.33,-0.91,-0.24,0.77, 0.12,0.63); const mat3 rot3 = mat3(-0.71, 0.52,-0.47,-0.08,-0.72,-0.68,-0.7,-0.45,0.56); /* directional artifacts can be reduced by rotating each octave */ float simplex3d_fractal(vec3 m) { return 0.5333333*simplex3d(m*rot1) +0.2666667*simplex3d(2.0*m*rot2) +0.1333333*simplex3d(4.0*m*rot3) +0.0666667*simplex3d(8.0*m); } void main() { vec2 pixel = 1./u_resolution; vec2 st = v_texcoord; // st.y = 1.0 - st.y; #ifdef BUFFER_0 // PING BUFFER // // Note: Here is where most of the action happens. But need's to read // te content of the previous pass, for that we are making another buffer // BUFFER_1 (u_buffer1) vec4 color = vec4(0,0,0,1); float depth = texture2D(u_depth, v_texcoord).x; vec4 ray = texture2D(u_world, v_texcoord); float vValid = (depth != 0 && ray.x != 0 && ray.y != 0) ? 1 : 0; if(depth < 0.012) vValid = 0; if(depth > 0.04) vValid = 0; if(vValid == 1 && mod(u_time * 3 + random3(vec3(v_texcoord, 0)).r, 1.0) < 0.5) { vec4 posWorld = vec4(1); posWorld.z = depth * 65535.0; // Remap to float range. posWorld.x = ray.x * posWorld.z; posWorld.y = ray.y * posWorld.z; // Flip X as OpenGL and K4A have different conventions on which direction is positive. posWorld.x *= -1; // float tmp = mix(texture2D(u_depth, st).r, texture2D(u_buffer1, st).r, 0.9); // color = vec4(vec3(tmp), 1.0); color.rgb = posWorld.rgb; color.a = vValid; } else { vec4 pos = texture2D(u_buffer1, st); float th = 3.1415 * 4 * simplex3d_fractal(pos.xyz * 0.001); float phi = 3.1415 * simplex3d_fractal(pos.xyz * 0.002); pos.x += cos(th) * cos(phi) * 7; pos.y += sin(th) * cos(phi) * 7; pos.z += sin(phi) * 7; color = pos; } gl_FragColor = color; #elif defined( BUFFER_1 ) // PONG BUFFER // // Note: Just copy the content of the BUFFER0 so it can be // read by it in the next frame // gl_FragColor = texture2D(u_buffer0, st); #else // Main Buffer vec3 buf1 = texture2D(u_buffer1, st).rgb; gl_FragColor = vec4(buf1, 1.0); #endif }