#ifdef GL_ES precision mediump float; #endif uniform sampler2DRect uFluid; uniform sampler2DRect uDepth; uniform sampler2DRect uV4l2cam; uniform sampler2DRect u_buffer0; uniform sampler2DRect u_buffer1; uniform bool uCalib; uniform vec2 uCalibXY; uniform float uCalibScale; uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform bool u_init; varying vec2 v_texcoord; vec3 random3(vec3 c) { float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0))); vec3 r; r.z = fract(512.0*j); j *= .125; r.x = fract(512.0*j); j *= .125; r.y = fract(512.0*j); return r-0.5; } /* skew constants for 3d simplex functions */ const float F3 = 0.3333333; const float G3 = 0.1666667; /* 3d simplex noise */ float simplex3d(vec3 p) { /* 1. find current tetrahedron T and it's four vertices */ /* s, s+i1, s+i2, s+1.0 - absolute skewed (integer) coordinates of T vertices */ /* x, x1, x2, x3 - unskewed coordinates of p relative to each of T vertices*/ /* calculate s and x */ vec3 s = floor(p + dot(p, vec3(F3))); vec3 x = p - s + dot(s, vec3(G3)); /* calculate i1 and i2 */ vec3 e = step(vec3(0.0), x - x.yzx); vec3 i1 = e*(1.0 - e.zxy); vec3 i2 = 1.0 - e.zxy*(1.0 - e); /* x1, x2, x3 */ vec3 x1 = x - i1 + G3; vec3 x2 = x - i2 + 2.0*G3; vec3 x3 = x - 1.0 + 3.0*G3; /* 2. find four surflets and store them in d */ vec4 w, d; /* calculate surflet weights */ w.x = dot(x, x); w.y = dot(x1, x1); w.z = dot(x2, x2); w.w = dot(x3, x3); /* w fades from 0.6 at the center of the surflet to 0.0 at the margin */ w = max(0.6 - w, 0.0); /* calculate surflet components */ d.x = dot(random3(s), x); d.y = dot(random3(s + i1), x1); d.z = dot(random3(s + i2), x2); d.w = dot(random3(s + 1.0), x3); /* multiply d by w^4 */ w *= w; w *= w; d *= w; /* 3. return the sum of the four surflets */ return dot(d, vec4(52.0)); } /* const matrices for 3d rotation */ const mat3 rot1 = mat3(-0.37, 0.36, 0.85,-0.14,-0.93, 0.34,0.92, 0.01,0.4); const mat3 rot2 = mat3(-0.55,-0.39, 0.74, 0.33,-0.91,-0.24,0.77, 0.12,0.63); const mat3 rot3 = mat3(-0.71, 0.52,-0.47,-0.08,-0.72,-0.68,-0.7,-0.45,0.56); /* directional artifacts can be reduced by rotating each octave */ float simplex3d_fractal(vec3 m) { return 0.5333333*simplex3d(m*rot1) +0.2666667*simplex3d(2.0*m*rot2) +0.1333333*simplex3d(4.0*m*rot3) +0.0666667*simplex3d(8.0*m); } float depthToSilhouette(float depth) { if(depth <= 0.4) return 0; // if(depth > 0.1) return 0; else return 1; } void main() { vec2 pixel = vec2(1.0);//./u_resolution; vec2 offset[9]; offset[0] = pixel * vec2(-1.0,-1.0); offset[1] = pixel * vec2( 0.0,-1.0); offset[2] = pixel * vec2( 1.0,-1.0); offset[3] = pixel * vec2(-1.0,0.0); offset[4] = pixel * vec2( 0.0,0.0); offset[5] = pixel * vec2( 1.0,0.0); offset[6] = pixel * vec2(-1.0,1.0); offset[7] = pixel * vec2( 0.0,1.0); offset[8] = pixel * vec2( 1.0,1.0); vec2 st = v_texcoord; // st.y = 1.0 - st.y; #ifdef BUFFER_0 // PING BUFFER // // Note: Here is where most of the action happens. But need's to read // te content of the previous pass, for that we are making another buffer // BUFFER_1 (u_buffer1) vec4 color = vec4(0,0,1,1); // color = texture(u_buffer1, st); gl_FragColor = color; #elif defined( BUFFER_1 ) // PONG BUFFER // // Note: Just copy the content of the BUFFER0 so it can be // read by it in the next frame // vec4 color = vec4(1,0,0,1); // color = texture(u_buffer0, st); gl_FragColor = color; #else if (uCalib) { vec4 depth = texture(uDepth, st); depth.r *= 100; depth.a = 0; vec4 v4l2 = texture(uV4l2cam, st); gl_FragColor = depth + v4l2; } else { // vec4 bufColor = texture(u_buffer1, st); vec4 color = vec4(st/1000,1,1); color = texture(uFluid, st); gl_FragColor = color; } #endif }