#extension GL_ARB_explicit_attrib_location : enable // ping pong inputs uniform sampler2DRect particles0; uniform sampler2DRect particles1; uniform sampler2DRect particles2; uniform sampler2DRect u_depth; uniform sampler2DRect u_world; uniform sampler2DRect u_v4l2cam; uniform ivec2 uFrameSize; uniform ivec2 uDepthFrameSize; uniform vec3 mouse; uniform float radiusSquared; uniform float elapsed; in vec2 texCoordVarying; layout(location = 0) out vec4 posOut; layout(location = 1) out vec4 velOut; layout(location = 2) out vec4 misOut; vec3 random3(vec3 c) { float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0))); vec3 r; r.z = fract(512.0*j); j *= .125; r.x = fract(512.0*j); j *= .125; r.y = fract(512.0*j); return r-0.5; } /* skew constants for 3d simplex functions */ const float F3 = 0.3333333; const float G3 = 0.1666667; /* 3d simplex noise */ float simplex3d(vec3 p) { /* 1. find current tetrahedron T and it's four vertices */ /* s, s+i1, s+i2, s+1.0 - absolute skewed (integer) coordinates of T vertices */ /* x, x1, x2, x3 - unskewed coordinates of p relative to each of T vertices*/ /* calculate s and x */ vec3 s = floor(p + dot(p, vec3(F3))); vec3 x = p - s + dot(s, vec3(G3)); /* calculate i1 and i2 */ vec3 e = step(vec3(0.0), x - x.yzx); vec3 i1 = e*(1.0 - e.zxy); vec3 i2 = 1.0 - e.zxy*(1.0 - e); /* x1, x2, x3 */ vec3 x1 = x - i1 + G3; vec3 x2 = x - i2 + 2.0*G3; vec3 x3 = x - 1.0 + 3.0*G3; /* 2. find four surflets and store them in d */ vec4 w, d; /* calculate surflet weights */ w.x = dot(x, x); w.y = dot(x1, x1); w.z = dot(x2, x2); w.w = dot(x3, x3); /* w fades from 0.6 at the center of the surflet to 0.0 at the margin */ w = max(0.6 - w, 0.0); /* calculate surflet components */ d.x = dot(random3(s), x); d.y = dot(random3(s + i1), x1); d.z = dot(random3(s + i2), x2); d.w = dot(random3(s + 1.0), x3); /* multiply d by w^4 */ w *= w; w *= w; d *= w; /* 3. return the sum of the four surflets */ return dot(d, vec4(52.0)); } /* const matrices for 3d rotation */ const mat3 rot1 = mat3(-0.37, 0.36, 0.85,-0.14,-0.93, 0.34,0.92, 0.01,0.4); const mat3 rot2 = mat3(-0.55,-0.39, 0.74, 0.33,-0.91,-0.24,0.77, 0.12,0.63); const mat3 rot3 = mat3(-0.71, 0.52,-0.47,-0.08,-0.72,-0.68,-0.7,-0.45,0.56); /* directional artifacts can be reduced by rotating each octave */ float simplex3d_fractal(vec3 m) { return 0.5333333*simplex3d(m*rot1) +0.2666667*simplex3d(2.0*m*rot2) +0.1333333*simplex3d(4.0*m*rot3) +0.0666667*simplex3d(8.0*m); } void main() { vec2 v4l2st = texCoordVarying.st; v4l2st /= 3; v4l2st -= vec2(0.5); v4l2st *= 1.65; v4l2st += vec2(0.5); v4l2st.s -= 35; v4l2st.t -= 60; float thermo = texture2D(u_v4l2cam, v4l2st).r; float depth = texture(u_depth, texCoordVarying.st).x; vec4 ray = texture(u_world, texCoordVarying.st); float vValid = (depth != 0 && ray.x != 0 && ray.y != 0) ? 1 : 0; if(depth < 0.012) vValid = 0; if(depth > 0.04) vValid = 0; vec4 posWorld = vec4(1); posWorld.z = -depth * 65535.0; // Remap to float range. posWorld.x = ray.x * posWorld.z; posWorld.y = ray.y * posWorld.z; vec3 pos = texture(particles0, texCoordVarying.st).xyz; if(vValid == 1) { pos = posWorld.xyz; } vec3 vel = texture(particles1, texCoordVarying.st).xyz; vec3 force = vec3(0,0,0); float th = 3.1415 * 4 * simplex3d_fractal(vec3(pos.xyz * 0.001)); float phi = 3.1415 * simplex3d_fractal(pos.xyz * 0.002); force.x += cos(th) * cos(phi); force.y += sin(th) * cos(phi); force.z += sin(phi); force *= 50; // accelerate vel += elapsed * force; // damping vel *= 0.95; // move pos += elapsed * vel; posOut = vec4(pos, 1.0); velOut = vec4(vel, 0.0); misOut = vec4(thermo, 0, 0, 0); }