201 lines
No EOL
5 KiB
GLSL
201 lines
No EOL
5 KiB
GLSL
#ifdef GL_ES
|
|
precision mediump float;
|
|
#endif
|
|
|
|
uniform sampler2DRect u_depth;
|
|
uniform sampler2DRect u_ofcam;
|
|
uniform sampler2DRect u_energy;
|
|
uniform sampler2DRect u_v4l2cam;
|
|
uniform sampler2DRect u_buffer0;
|
|
uniform sampler2DRect u_buffer1;
|
|
|
|
uniform bool u_calib;
|
|
uniform vec2 u_calibXY;
|
|
uniform float u_calibScale;
|
|
|
|
uniform vec2 u_resolution;
|
|
uniform vec2 u_mouse;
|
|
uniform float u_time;
|
|
|
|
uniform bool u_init;
|
|
|
|
varying vec2 v_texcoord;
|
|
|
|
|
|
vec3 random3(vec3 c) {
|
|
float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0)));
|
|
vec3 r;
|
|
r.z = fract(512.0*j);
|
|
j *= .125;
|
|
r.x = fract(512.0*j);
|
|
j *= .125;
|
|
r.y = fract(512.0*j);
|
|
return r-0.5;
|
|
}
|
|
|
|
/* skew constants for 3d simplex functions */
|
|
const float F3 = 0.3333333;
|
|
const float G3 = 0.1666667;
|
|
|
|
/* 3d simplex noise */
|
|
float simplex3d(vec3 p) {
|
|
/* 1. find current tetrahedron T and it's four vertices */
|
|
/* s, s+i1, s+i2, s+1.0 - absolute skewed (integer) coordinates of T vertices */
|
|
/* x, x1, x2, x3 - unskewed coordinates of p relative to each of T vertices*/
|
|
|
|
/* calculate s and x */
|
|
vec3 s = floor(p + dot(p, vec3(F3)));
|
|
vec3 x = p - s + dot(s, vec3(G3));
|
|
|
|
/* calculate i1 and i2 */
|
|
vec3 e = step(vec3(0.0), x - x.yzx);
|
|
vec3 i1 = e*(1.0 - e.zxy);
|
|
vec3 i2 = 1.0 - e.zxy*(1.0 - e);
|
|
|
|
/* x1, x2, x3 */
|
|
vec3 x1 = x - i1 + G3;
|
|
vec3 x2 = x - i2 + 2.0*G3;
|
|
vec3 x3 = x - 1.0 + 3.0*G3;
|
|
|
|
/* 2. find four surflets and store them in d */
|
|
vec4 w, d;
|
|
|
|
/* calculate surflet weights */
|
|
w.x = dot(x, x);
|
|
w.y = dot(x1, x1);
|
|
w.z = dot(x2, x2);
|
|
w.w = dot(x3, x3);
|
|
|
|
/* w fades from 0.6 at the center of the surflet to 0.0 at the margin */
|
|
w = max(0.6 - w, 0.0);
|
|
|
|
/* calculate surflet components */
|
|
d.x = dot(random3(s), x);
|
|
d.y = dot(random3(s + i1), x1);
|
|
d.z = dot(random3(s + i2), x2);
|
|
d.w = dot(random3(s + 1.0), x3);
|
|
|
|
/* multiply d by w^4 */
|
|
w *= w;
|
|
w *= w;
|
|
d *= w;
|
|
|
|
/* 3. return the sum of the four surflets */
|
|
return dot(d, vec4(52.0));
|
|
}
|
|
|
|
/* const matrices for 3d rotation */
|
|
const mat3 rot1 = mat3(-0.37, 0.36, 0.85,-0.14,-0.93, 0.34,0.92, 0.01,0.4);
|
|
const mat3 rot2 = mat3(-0.55,-0.39, 0.74, 0.33,-0.91,-0.24,0.77, 0.12,0.63);
|
|
const mat3 rot3 = mat3(-0.71, 0.52,-0.47,-0.08,-0.72,-0.68,-0.7,-0.45,0.56);
|
|
|
|
/* directional artifacts can be reduced by rotating each octave */
|
|
float simplex3d_fractal(vec3 m) {
|
|
return 0.5333333*simplex3d(m*rot1)
|
|
+0.2666667*simplex3d(2.0*m*rot2)
|
|
+0.1333333*simplex3d(4.0*m*rot3)
|
|
+0.0666667*simplex3d(8.0*m);
|
|
}
|
|
|
|
float depthToSilhouette(float depth) {
|
|
if(depth <= 0.4) return 0;
|
|
// if(depth > 0.1) return 0;
|
|
else return 1;
|
|
}
|
|
|
|
void main() {
|
|
vec2 pixel = vec2(1.0);//./u_resolution;
|
|
vec2 offset[9];
|
|
offset[0] = pixel * vec2(-1.0,-1.0);
|
|
offset[1] = pixel * vec2( 0.0,-1.0);
|
|
offset[2] = pixel * vec2( 1.0,-1.0);
|
|
|
|
offset[3] = pixel * vec2(-1.0,0.0);
|
|
offset[4] = pixel * vec2( 0.0,0.0);
|
|
offset[5] = pixel * vec2( 1.0,0.0);
|
|
|
|
offset[6] = pixel * vec2(-1.0,1.0);
|
|
offset[7] = pixel * vec2( 0.0,1.0);
|
|
offset[8] = pixel * vec2( 1.0,1.0);
|
|
|
|
vec2 st = v_texcoord;
|
|
// st.y = 1.0 - st.y;
|
|
|
|
|
|
#ifdef BUFFER_0
|
|
// PING BUFFER
|
|
//
|
|
// Note: Here is where most of the action happens. But need's to read
|
|
// te content of the previous pass, for that we are making another buffer
|
|
// BUFFER_1 (u_buffer1)
|
|
vec4 color = vec4(0,0,0,0);
|
|
if(u_init) {
|
|
color = vec4(texture(u_energy, st).rgba);
|
|
color = vec4(mix(texture(u_buffer1, st).rgb * 0.95, color.rgb, color.a), 1);
|
|
}
|
|
else {
|
|
|
|
float kernel[9];
|
|
kernel[0] = 0.125*2;
|
|
kernel[1] = 0.25*2;
|
|
kernel[2] = 0.125*2;
|
|
kernel[3] = 0.25*2;
|
|
kernel[4] = 1.0;
|
|
kernel[5] = 0.25*2;
|
|
kernel[6] = 0.125*2;
|
|
kernel[7] = 0.25*2;
|
|
kernel[8] = 0.125*2;
|
|
|
|
float lap = 0;
|
|
vec4 cc = vec4(0);
|
|
|
|
for (int i=0; i < 9; i++){
|
|
// float tmp = texture(u_buffer1, st + offset[i]).r;
|
|
// lap += tmp * kernel[i] / 2.5;
|
|
// vec4 ccc = texture(u_buffer1, st + offset[i]);
|
|
// if(length(ccc.rgb) > length(cc.rgb)) cc = ccc;
|
|
// if(ccc.r < 1 && ccc.g < 1 && ccc.b < 1) {
|
|
// cc += ccc * kernel[i] / 4;
|
|
// }
|
|
}
|
|
// color = vec4(vec3(lap * 2.0), 1.0);
|
|
// color = vec4(cc.rgba);
|
|
// // color = vec4(cc.rgba/4);
|
|
// color.r = min(1, color.r);
|
|
// color.g = min(1, color.g);
|
|
// color.b = min(1, color.b);
|
|
// color.a = min(1, color.a);
|
|
|
|
color = texture(u_buffer1, st);
|
|
|
|
}
|
|
|
|
gl_FragColor = color;
|
|
|
|
#elif defined( BUFFER_1 )
|
|
// PONG BUFFER
|
|
//
|
|
// Note: Just copy the content of the BUFFER0 so it can be
|
|
// read by it in the next frame
|
|
//
|
|
vec4 color = vec4(0,0,0,1);
|
|
color = texture(u_buffer0, st);
|
|
gl_FragColor = color;
|
|
#else
|
|
// Main Buffer
|
|
if (u_calib) {
|
|
vec4 depth = texture(u_depth, st);
|
|
depth.r *= 100;
|
|
depth.a = 0;
|
|
vec4 v4l2 = texture(u_v4l2cam, st);
|
|
gl_FragColor = depth + v4l2;
|
|
}
|
|
else {
|
|
vec4 pointCloudColor = texture(u_ofcam, st);
|
|
vec4 energyColor = texture(u_energy, st);
|
|
gl_FragColor = vec4(mix(pointCloudColor.rgb, energyColor.rgb, energyColor.a), 1.0);
|
|
}
|
|
|
|
#endif
|
|
|
|
} |