162 lines
4.1 KiB
GLSL
162 lines
4.1 KiB
GLSL
|
#ifdef GL_ES
|
||
|
precision mediump float;
|
||
|
#endif
|
||
|
|
||
|
uniform sampler2D u_depth;
|
||
|
uniform sampler2D u_world;
|
||
|
|
||
|
uniform ivec2 uFrameSize;
|
||
|
uniform ivec2 uDepthFrameSize;
|
||
|
|
||
|
uniform sampler2D u_buffer0;
|
||
|
uniform sampler2D u_buffer1;
|
||
|
|
||
|
uniform vec2 u_resolution;
|
||
|
uniform vec2 u_mouse;
|
||
|
uniform float u_time;
|
||
|
|
||
|
uniform bool u_init;
|
||
|
|
||
|
varying vec2 v_texcoord;
|
||
|
|
||
|
vec3 random3(vec3 c) {
|
||
|
float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0)));
|
||
|
vec3 r;
|
||
|
r.z = fract(512.0*j);
|
||
|
j *= .125;
|
||
|
r.x = fract(512.0*j);
|
||
|
j *= .125;
|
||
|
r.y = fract(512.0*j);
|
||
|
return r-0.5;
|
||
|
}
|
||
|
|
||
|
/* skew constants for 3d simplex functions */
|
||
|
const float F3 = 0.3333333;
|
||
|
const float G3 = 0.1666667;
|
||
|
|
||
|
/* 3d simplex noise */
|
||
|
float simplex3d(vec3 p) {
|
||
|
/* 1. find current tetrahedron T and it's four vertices */
|
||
|
/* s, s+i1, s+i2, s+1.0 - absolute skewed (integer) coordinates of T vertices */
|
||
|
/* x, x1, x2, x3 - unskewed coordinates of p relative to each of T vertices*/
|
||
|
|
||
|
/* calculate s and x */
|
||
|
vec3 s = floor(p + dot(p, vec3(F3)));
|
||
|
vec3 x = p - s + dot(s, vec3(G3));
|
||
|
|
||
|
/* calculate i1 and i2 */
|
||
|
vec3 e = step(vec3(0.0), x - x.yzx);
|
||
|
vec3 i1 = e*(1.0 - e.zxy);
|
||
|
vec3 i2 = 1.0 - e.zxy*(1.0 - e);
|
||
|
|
||
|
/* x1, x2, x3 */
|
||
|
vec3 x1 = x - i1 + G3;
|
||
|
vec3 x2 = x - i2 + 2.0*G3;
|
||
|
vec3 x3 = x - 1.0 + 3.0*G3;
|
||
|
|
||
|
/* 2. find four surflets and store them in d */
|
||
|
vec4 w, d;
|
||
|
|
||
|
/* calculate surflet weights */
|
||
|
w.x = dot(x, x);
|
||
|
w.y = dot(x1, x1);
|
||
|
w.z = dot(x2, x2);
|
||
|
w.w = dot(x3, x3);
|
||
|
|
||
|
/* w fades from 0.6 at the center of the surflet to 0.0 at the margin */
|
||
|
w = max(0.6 - w, 0.0);
|
||
|
|
||
|
/* calculate surflet components */
|
||
|
d.x = dot(random3(s), x);
|
||
|
d.y = dot(random3(s + i1), x1);
|
||
|
d.z = dot(random3(s + i2), x2);
|
||
|
d.w = dot(random3(s + 1.0), x3);
|
||
|
|
||
|
/* multiply d by w^4 */
|
||
|
w *= w;
|
||
|
w *= w;
|
||
|
d *= w;
|
||
|
|
||
|
/* 3. return the sum of the four surflets */
|
||
|
return dot(d, vec4(52.0));
|
||
|
}
|
||
|
|
||
|
/* const matrices for 3d rotation */
|
||
|
const mat3 rot1 = mat3(-0.37, 0.36, 0.85,-0.14,-0.93, 0.34,0.92, 0.01,0.4);
|
||
|
const mat3 rot2 = mat3(-0.55,-0.39, 0.74, 0.33,-0.91,-0.24,0.77, 0.12,0.63);
|
||
|
const mat3 rot3 = mat3(-0.71, 0.52,-0.47,-0.08,-0.72,-0.68,-0.7,-0.45,0.56);
|
||
|
|
||
|
/* directional artifacts can be reduced by rotating each octave */
|
||
|
float simplex3d_fractal(vec3 m) {
|
||
|
return 0.5333333*simplex3d(m*rot1)
|
||
|
+0.2666667*simplex3d(2.0*m*rot2)
|
||
|
+0.1333333*simplex3d(4.0*m*rot3)
|
||
|
+0.0666667*simplex3d(8.0*m);
|
||
|
}
|
||
|
|
||
|
|
||
|
void main() {
|
||
|
vec2 pixel = 1./u_resolution;
|
||
|
vec2 st = v_texcoord;
|
||
|
// st.y = 1.0 - st.y;
|
||
|
|
||
|
|
||
|
#ifdef BUFFER_0
|
||
|
// PING BUFFER
|
||
|
//
|
||
|
// Note: Here is where most of the action happens. But need's to read
|
||
|
// te content of the previous pass, for that we are making another buffer
|
||
|
// BUFFER_1 (u_buffer1)
|
||
|
vec4 color = vec4(0,0,0,1);
|
||
|
|
||
|
float depth = texture2D(u_depth, v_texcoord).x;
|
||
|
vec4 ray = texture2D(u_world, v_texcoord);
|
||
|
|
||
|
float vValid = (depth != 0 && ray.x != 0 && ray.y != 0) ? 1 : 0;
|
||
|
|
||
|
if(depth < 0.012) vValid = 0;
|
||
|
if(depth > 0.04) vValid = 0;
|
||
|
|
||
|
|
||
|
if(vValid == 1 && mod(u_time * 3 + random3(vec3(v_texcoord, 0)).r, 1.0) < 0.5) {
|
||
|
vec4 posWorld = vec4(1);
|
||
|
posWorld.z = depth * 65535.0; // Remap to float range.
|
||
|
posWorld.x = ray.x * posWorld.z;
|
||
|
posWorld.y = ray.y * posWorld.z;
|
||
|
|
||
|
// Flip X as OpenGL and K4A have different conventions on which direction is positive.
|
||
|
posWorld.x *= -1;
|
||
|
|
||
|
|
||
|
// float tmp = mix(texture2D(u_depth, st).r, texture2D(u_buffer1, st).r, 0.9);
|
||
|
// color = vec4(vec3(tmp), 1.0);
|
||
|
color.rgb = posWorld.rgb;
|
||
|
color.a = vValid;
|
||
|
}
|
||
|
else {
|
||
|
vec4 pos = texture2D(u_buffer1, st);
|
||
|
float th = 3.1415 * 4 * simplex3d_fractal(pos.xyz * 0.001);
|
||
|
float phi = 3.1415 * simplex3d_fractal(pos.xyz * 0.002);
|
||
|
pos.x += cos(th) * cos(phi) * 7;
|
||
|
pos.y += sin(th) * cos(phi) * 7;
|
||
|
pos.z += sin(phi) * 7;
|
||
|
color = pos;
|
||
|
}
|
||
|
|
||
|
gl_FragColor = color;
|
||
|
|
||
|
#elif defined( BUFFER_1 )
|
||
|
// PONG BUFFER
|
||
|
//
|
||
|
// Note: Just copy the content of the BUFFER0 so it can be
|
||
|
// read by it in the next frame
|
||
|
//
|
||
|
gl_FragColor = texture2D(u_buffer0, st);
|
||
|
#else
|
||
|
// Main Buffer
|
||
|
vec3 buf1 = texture2D(u_buffer1, st).rgb;
|
||
|
gl_FragColor = vec4(buf1, 1.0);
|
||
|
|
||
|
#endif
|
||
|
|
||
|
}
|